Dr. Richelle Tanner
Recent work and publications.
For work by my lab, see www.seacrlab.com/research-themes
Restoration ecology of submerged aquatic vegetation and associated fauna
In Suisun Marsh (part of the San Francisco Bay and the Sacramento-San Joaquin Delta), invasive reeds can dramatically alter the marsh's physical characteristics and ecological interactions. In this project, we seek to understand how the invasive Phragmites australis (common reed) is changing predator-prey interactions and food web dynamics through the modulation of prey environments.
In eastern Pacific eelgrass beds, I found that land use, not abiotic indicators, best predicted eelgrass sea hare presence in existing eelgrass beds. However when assessed over time, the same indicators as above (with secondary productivity of fishes) were important in predicting sea hare abundance. Using this model to evaluate restoration sites in San Francisco Bay, I found that only ~50% of currently planned eelgrass restoration areas are predicted to support healthy populations of sea hares, giving more opportunity for us to investigate the role of grazer community success in eelgrass restoration efforts.
In Southern California eelgrass beds, we used estimates of secondary productivity to assess the fishery value of eelgrass as nursery ground for Paralabrax clanthratus, the kelp bass. We found variation in young of the year fish populations dependent on season, and made recommendations for the timing of management assessment of these eelgrass beds. We were also able to add eelgrass canopy height to the currently surveyed metrics (shoot density and areal coverage) as an important indicator of kelp bass biomass.
Tanner RL (2018). Predicting Phyllaplysia taylori (Anaspidea: Aplysiidae) presence in Northeastern Pacific estuaries to facilitate grazer community inclusion in eelgrass restoration. Estuarine, Coastal and Shelf Science 214: 110-119. doi:10.1016/j.ecss.2018.09.011
Tanner RL, Obaza AK, & Ginsburg DW (2019). Secondary Production of Kelp Bass Paralabrax clathratus in Relation to Coastal Eelgrass Zostera marina Habitat in a Southern California Marine Protected Area. Southern California Academy of Sciences Bulletin. 118(3): 158-172. doi: 10.3160/0038-3872-118.3.158
Reducing barriers to inclusivity in science
Starting in 2019, I have joined forces with colleagues around the globe to lay out specifically the challenges and potential action items possible for increasing inclusivity in biology. We have three upcoming manuscripts on the topic, one of which you can read on the NSF white paper repository. The other two deal with bias against minority-serving events at conferences and the role of open technology in increasing participation in experimental research (look for a special issue in Integrative & Comparative Biology in 2022). We look forward to highlighting bias in conference organization, grant decisions, open source technology, and most importantly the role of researchers in society through not only social commentary but also peer-reviewed literature at the collegiate level.
Burnett NP, Hernandez AM, King EE, Tanner RL, & Wilsterman K (2022). A push for inclusive data collection in STEM organizations. Science.
Burnett NP, King EE, Salcedo MK, Tanner RL, & Wilsterman K (2020). Conference scheduling undermines diversity efforts. Nature Ecology & Evolution.
Nguyen, K. H., Akiona, A. K., Chang, C. C., Chaudhary, V. B., Cheng, S. J., Johnson, S. M., Kahanamoku, S. S., Lee, A., deLeon Sanchez, E. E., Segui, L. M., & Tanner, R. L. (2022). Who are we? Highlighting Nuances in Asian American Experiences in Ecology and Evolutionary Biology. Bulletin of the Ecological Society of America, 103(1), 1-8.
Richelle L Tanner, Neena Grover, Michelle L Anderson, Katherine C Crocker, Shuchismita Dutta, Angela M Horner, Loren E Hough, Talia Y Moore, Gail L Rosen, Kaitlin S Whitney, Adam P Summers, Examining Cultural Structures and Functions in Biology, Integrative and Comparative Biology, Volume 61, Issue 6, December 2021, Pages 2282–2293
Oellermann, M., Jolles, J. W., Ortiz, D., Seabra, R., Wenzel, T., Wilson, H., & Tanner, R. (2021). Harnessing the benefits of open electronics in science. arXiv preprint arXiv:2106.15852.
Frames and values for effective science communication
Understanding the cognitive science and linguistics of communication is essential to the appropriate distribution of scientific findings we produce as biologists. I have partnered with colleagues at the University of Florida and the University of California Agriculture and Natural Resources to expand tools for communicating about applied and climate sciences across audiences. We use the framework championed by the National Network for Ocean and Climate Change Interpretation (see "Science Communication" tab) for effective, social science-based framing of scientific topics in both academic and informal education settings.
We use our framework of values, metaphors, and solutions to facilitate civic-minded discourse among the public, scientists, agencies, and historically marginalized stakeholder groups in local ecosystems. Most recently we have undertaken a new initiative to understand the framing of wetland restoration science in the California Bay-Delta.
Bonnano A, Ennes M, Hoey J, Moberg E, Nelson SM, Pletcher, N, & Tanner RL (2021). Empowering hope-based climate change communication techniques for the Gulf of Maine. Invited submission to GoM50 special issue at Elementa
Inter-individual variation in mussel physiological performance
In the Dowd Lab, we are interested in how variation shapes population-level responses to warming. The intertidal zone experiences a wide range of environmental conditions that vary on a temporal and spatial scale, resulting in extremes within its microclimates. Intertidal mussels may deal with these conditions in many different ways on the cellular level, but arrive at similarly successful phenotypes. How do we assess the impacts of inter-individual variation on fitness to better predict population-level responses to warming and increases in extreme temperatures with climate change?
Currently we are working with transcriptomic and proteomic data to look for signatures of differential variation and expression in certain gene pathways to understand the interplay between how the organism mounts a response (RNA expression) and what happens in actuality (protein expression).
Tanner RL, Gleason LU, & Dowd WW (2022). Environment-driven shifts in interindividual variation and phenotypic integration within subnetworks of the mussel transcriptome and proteome. Molecular Ecology.
Tanner RL & Dowd WW (2019). Inter-individual physiological variation in responses to environmental variation and environmental change: integrating across traits and time. Invited submission at Comparative Biochemistry and Physiology: Part A (special issue: Mechanisms of sensitivity and resilience in a rapidly changing ocean).
Visit my WSU lab page from my postdoctoral position at https://labs.wsu.edu/dowd/
Thermal tolerance plasticity in mollusks
During my PhD, I focused on how increases in warming impacted the acclimation capacity of mollusks in dealing with increases in both average temperature and extreme events. My dissertation focused on the eelgrass sea hare, Phyllaplysia taylori, but I also have projects in a variety of eastern Pacific nudibranchs and Lottia limatula with collaborators.
The eelgrass sea hare has many unique life history characteristics that make it an ideal system for studying the evolution of plasticity: it plays an ecologically important role as an epiphyte grazer, it has direct development, cannot disperse actively, has two generations per year in thermally disparate seasons, and withstands wide environmental variation within estuarine eelgrass beds. We found a wide range of populations expressing different reversible acclimation capacities and overall thermal tolerance. We were able to correlate this with underlying genetic profiles and look forward to using this knowledge to build physical models of sea hare passive dispersal to inform existing population structure and make recommendations for future restoration introductions. We also looked at developmental and transgenerational thermal tolerance plasticity, finding that future climate scenarios (both warming and extremes) decrease offspring success. We were also able to determine that persistence through thermally disparate seasons is due to plasticity in maternal provisioning, and future climate scenarios disrupt this "alternation of generations" in thermal tolerance due to a stress on energy budgets.
Experimental approaches for these projects include measurements of metabolic rate, heart rate, foot muscle function, reproductive success, and survival.
Tanner, RL, Bowie, RCK, & Stillman, JH (2020). Thermal exposure and transgenerational plasticity influence embryonic success in a bivoltine estuarine sea hare. Marine Ecology Progress Series 634: 199-211. doi:10.3354/meps13207.
Armstrong, EJ, Tanner, RL, & Stillman, JH (2019). High heat tolerance is negatively correlated with heat tolerance plasticity in nudibranch mollusks. Physiological and Biochemical Zoology 92:4, 430-444. doi:10.1086/704519.
Wang T, Tanner RL, Armstrong EJ, Lindberg DR, & Stillman JH (2019). Thermal plasticity in file limpet, Lottia limatula, across oceanic to estuarine gradients in habitat temperature. Aquatic Biology 28: 113-125. doi:10.3354/ab00714.
Visit my UC Berkeley lab pages from my PhD at http://ib.berkeley.edu/labs/stillman/ or https://ib.berkeley.edu/labs/sousa/
Salinity effects on the eelgrass sea hare and eelgrass beds
In the 2017 winter season, San Francisco Bay experienced heavy rains that resulted in a complete shift to freshwater conditions for multiple months. Consequently, we saw local extirpation of the eelgrass sea hare during this time. This extreme freshwater event did not similarly affect the populations surveyed for previous projects, so we were able to assess any potential reductions in genetic diversity due to this extreme event in other populations, while also looking at the ecological implications of losing this key grazer species in San Francisco Bay.
I also worked on a project with a Stillman Lab masters student, Lindsay Faye, where we looked at the potential synergistic effects of salinity and temperature changes with future climate scenarios. We look forward to using these data to inform restoration efforts in San Francisco Bay to aid in eelgrass bed recovery.
Tanner, RL, Faye, LE & Stillman, JH (2019). Temperature and salinity sensitivity of respiration, grazing, and defecation rates in the estuarine eelgrass sea hare, Phyllaplysia taylori. Marine Biology 166(8): 109. doi:10.1007/s00227-019-3559-4.